Prediction of Therapy Response and Prognosis in Leukemias by Flow Cytometric MDR Assays

نویسندگان

  • János Kappelmayer
  • Zsuzsa Hevessy
  • András Apjok
  • Katalin Tauberné Jakab
چکیده

Multidrug resistance (MDR) is an unwanted phenomenon, that may cause therapy failure in several neoplasms including hematological malignancies. The purpose of any type of laboratory MDR assay is to reliably identify such patients and to provide useful data to clinicians with a relatively short turnaround time. MDR can be multicausal and several previous data identified a group of transmembrane proteins - the ATP-binding casette (ABC) proteins - that may be involved in MDR in various hematological malignancies. The prototype of these proteins is the P-glycoprotein (Pgp, MDR1, ABCB1) that is a seven-membrane spanning transmembrane protein capable of extruding several cytotoxic drugs that are of key importance in the treatment of hematological disorders. Similarly other ABC proteins - Multidrug resistance associated protein 1 (ABCC1) and breast cancer resistance protein (ABCG2) are both capable of pumping out cytotoxic drugs. Here, we present flow cytometric methods to identify MDR proteins by antigen and activity assays. The advantage of flow technology is the short turnaround time and its relative easiness compared to nucleic acid based technologies. However, for the activity assays, it should be noted, that these functional tests require live cells, thus adequate results can only be provided if the specimen transport can be completed within 6 hours of sample collection. Identification of MDR proteins provides prognostic information and may modulate therapy, thus signifies a clinically useful information in the evaluation of patients with leukemias.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CEREBRAL BLOOD FLOW REGULATION IN ANESTHETIZED MORPHINE DEPENDENT RATS: THE ROLE OF THE ADENOSINE SYSTEM

Adenosine has many of the characteristics of a regulator of cerebral blood flow and adenosine receptors change in morphine dependency. In this study the changes in adenosine receptors' responsiveness of pial vessels in the hind limb area of the sensory cortex were evaluated in morphine dependent rats (MDR) using the laser Doppler flowmetry technique. Adult male Sprague Dawley rats (250-350 ...

متن کامل

A survey on the DNA content in Transitional cell carcinoma of bladder and its relation with histological graging

Transitional cell carcinoma(T.C.C) of bladder display an upredictable biological behavior.Morphologic methods of grading this tumor are insuficient to predict the clinical outcome of the patients.the aim of this study was to investigate the relationships between histological grading staging and DAN ploidy especially in intermediate grade II(IIa and IIb). in a retrospective study  of tissue spec...

متن کامل

Prediction of relapse or survival in patients with node-negative breast cancer by DNA flow cytometry.

More accurate prediction of the prognosis in women with node-negative breast cancer may improve physicians' ability to identify the patients most likely to benefit from systematic adjuvant therapy. With this in mind, we performed DNA flow-cytometric measurements of ploidy and the fraction of cells in the synthesis phase of the cell cycle (S-phase fraction) on 395 specimens of node-negative brea...

متن کامل

Residual DNA double strand breaks correlates with excess acute toxicity from radiotherapy

Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...

متن کامل

Deficient Expression of Bruton's Tyrosine Kinase in Monocytes from X-Linked Agammaglobulinemia as Evaluated by a Flow Cytometric Analysis and its Clinical Application to Carrier Detection

Background: The B-cell defect in X-linked agammaglobulinemia (XLA) is caused by mutations in the gene for Bruton's tyrosine kinase (BTK). BTK mutations result in deficient expression of BTK protein in peripheral blood monocytes. Methods: Using the anti-BTK monoclonal antibody (48-2H), a flow cytometric analysis of intra cytoplasmic BTK protein expression in monocytes was performed to identify I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013